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Abstract 

Machine learning models built to read and comprehend text are becoming ever more 

complex. Driven by a desire for more accurate text understanding (whether to be used for 

generating conversational responses, taking actions, or even just storing knowledge), researchers 

have been iteratively improving on reading comprehension question-answering techniques. In this 

paper, I investigate one issue in this subdomain that many state-of-the-art approaches aren’t 

resilient to: inferential jumps, in which questions being asked don’t line up exactly with stored 

memories. I then develop a novel architecture, Synonym-Based Memory Networks (SynNets), that 

use WordNet and Word2Vec to better make such jumps from input documents when answering 

questions. In practice, applied to appropriately modified subsets of the bAbI and WikiQA datasets, 

I find that this model is indeed able to outperform an unmodified End-to-End Memory Network 

baseline. 
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1 Background 

The past decade has seen an explosion of interest and research into natural language processing 

(NLP), the means by which machines interpret and interact with human-understandable language. 

Thanks to this relentless development, dialog agents have become increasingly advanced, tasked 

with doing anything from ordering groceries to telling party jokes. While heuristic or ‘retrieval-

based’ agents once dominated this market, it is conversational machine learning that now powers 

millions of users’ interactions with their devices via Siri, Alexa, Google, and Cortana (not to 

mention the wave of chatbots present on platforms from Facebook to WeChat). [1] This gradual 

change has been driven in large part by the complexities inherent in talking to humans in an open 

domain; old models that pulled pre-constructed answers from vast databases weren’t resilient to 

the sheer variety of possible human questions. It seems that these efforts have largely paid off – 

today’s AI assistants are vastly more sophisticated than those of yesteryear. [2]  

 All this improvement notwithstanding, end-to-end dialog agents still suffer from a host of 

seemingly simple problems; a plethora of pop culture references to ‘Siri fails’ have developed 

around the assistant’s misunderstanding of basic questions. [3] One interesting class of such 

failures are related to conversational agents’ inability to intelligently retain relevant information. 

This most often manifests itself in the form of sharply divergent answers to similar questions (see 

Figure 1) or as repeated requests for previously disclosed information. 
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Figure 1: While Siri has clever, canned responses ready for some queries (left), it sometimes is 
seemingly forgetful (middle) or wildly inconsistent across answers to closely related questions 
(right). 
 
 
 These problems persist despite recent advances in storing memories for machine learning. 

From image processing programs to translation bots to reading comprehension agents, there has 

been a glut of powerful ML models with powerful recollection abilities. That said, the nature of 

memory utilization, especially in the realm of question-answering, is often fairly shallow, relying 

on direct word matches between memorized phrases and posed questions. This explains some of 

the difficulty that Siri has in the third example from Figure 1 above; regardless of how good its 

memory storage is, without an ability to link those three questions together and dynamically 

remember them, it will never be guaranteed to respond consistently.  

 This disconnect between memory retrieval and dynamic memory understanding is what I 

term the ‘inference jump’.  Humans naturally extract far more information from a given sentence 
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than the words in the sentence themselves. For example, when I announce that I’m hoping to chow 

down on some naan, I’m simultaneously implying that I’m hoping to eat some naan, I’m hoping 

to chow down on some Indian food, I’m not hoping to eat Mexican food, and perhaps even I like 

Indian food. Some of these translations may seem excessively simple, but their value shouldn’t be 

understated: if I subsequently ask Siri for food options, I’d hope that the agent would be able to 

find Indian restaurants open soon near me. 

 The inference jump can also manifest itself in other contexts. Conversational agents often 

act and sound repetitive, cycling through the same responses to given queries. An intelligent use 

of dynamic, inference-enabled memory would be to aid in the construction of more varied 

responses. Such an AI might be able to answer the same question in different ways but with the 

same content, thereby better approximating the response pattern of a human being. 

 

Figure 2: Questions 2 and 3 demonstrate the inference jump at work – machines attempting to 
answer them would need to make an inferential link (however small) between Paris and France 
and between ‘feared’ and ‘scared of.’ Correspondingly, state-of-the-art conversational agents 
would likely be able to answer Question 1 with ease but subsequently struggle on 2 and 3.  
 

 Being able to more intelligently combine memory retrieval with inferences is important 

beyond creating a more humanoid Alexa, though. Developing a more complete ‘understanding’ of 

text (reading comprehension) relies on this ability (see Figure 2). The advantages to training an 

Sample Test Question 
 

Read and Respond: “John Doe was born on a small street in Paris. His brown hair 
almost completely covered his forehead. It had been many moons since he’d cut it; he 
feared barbers.” 
 
1: Is John Doe’s hair brown? 
2: Was John Doe born in France? 
3: What is John Doe scared of? 
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inference-enabled, memory-possessing agent on a reading comprehension dataset are immense – 

it would be able to generalize its learning more broadly to accurately answer a far wider array of 

follow up questions.  

 The preceding paragraphs set up in vague terms the motivation for this paper: I hope to 

develop a machine learning model that is better able to make small-scale inferential jumps in 

reasoning when answering questions. To limit the scope of this problem, I focus exclusively on 

question answering on reading comprehension datasets, testing my model on questions that cannot 

be directly tied to exact phrases in the text. There are two inferential jumps I attempt to bridge with 

this new architecture: 

1. Synonymic Relatedness (being afraid is being scared, chowing down on is eating, etc.) 

2. Conceptual Entailment (a poodle is necessarily a dog, naan is a subset of Indian food, etc.) 

The latter category includes geographical entailment as well (as in the Paris example 

above). The remainder of this paper is organized as follows. Section §2 surveys some past work 

done in this domain. I discuss my approach and implementation details in Section §3 and the 

rationale and challenges associated with this approach in Section §4. Section §5 details the datasets 

I use for my work, while Section §6 outlines my results on this data. Finally, I sketch some 

potential avenues for future work in Section §7 and conclude in Section §8. 

2 Related Work 

Broadly, there are three relevant areas of background research pertinent to my work. First, existing 

Question-Answering models were informative in guiding the possible approaches I wished to 

develop for this problem. Second, memory networks, learning models developed to solve various 

NLP-related tasks, served as the underlying architecture for my project, and represented the 
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baselines that I wished to improve upon. Finally, I built upon other work done to improve the 

inferential reasoning capacity of machines, even if not directly applied to the NLP space. 

2.1 Q-A Models 

The basic task that Q-A machine learning models are faced with involves being fed information 

and told to answer follow-up questions on the content of these conversations. There are a variety 

of ways that researchers have attacked this problem, but the central intuition behind many proposed 

models is the need for a ‘storage mechanism’ and (sometimes) an ‘attention mechanism.’ The 

former is the way by which agents retain memories to be accessed when constructing answers, 

while the latter is the way by which agents identify the particular pieces of memory most relevant 

to a given question.  

 Most storage mechanisms consist of some encoding of textual inputs, whether separated 

into sentences, ‘windows’ (sliding groups of words), or some other form. Some memory structures 

are static, constructed during the initial document input, while others are dynamically modified 

through their use. For example, Joulin and Mikolov [4] build a Recurrent Neural Network (RNN) 

that can begin to keep track of past memories in a stack, but Xiong et al. [5] outperform that setup 

with what they call the Dynamic Coattention Network, an architecture that refines a question and 

input document simultaneously (and dynamically) using Long Short Term Memory networks 

(LSTMs).1 

 The ‘attention mechanism’ domain has been the focus of a vast amount of research in recent 

years. In the machine translation space2, Bahdanau et al. [7] build a system called RNNSearch. 

																																																								
1 For the purposes of this paper, I do not explore RNN and LSTM constructions in much depth, though it 
is worth mentioning that these neural network architectures are very commonly used in the NLP space 
(especially in conjunction with other modules). For more, see [6] 
2 Broadly, machine translation problems involve converting text in one format to another (often language 
to language). Techniques vary wildly, but many approaches use networks that recursively convert 
individual entities from the input. See §11.1 for more 
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This neural machine translation approach involves building a single RNN that is jointly tuned to 

refine both an encoder and decoder for relevant memories. In doing so, their key contribution is to 

move from a fixed-length source vector model to one that can soft-search for relevant pieces of 

source text, thereby allowing more nuanced retrieval of memories to pay attention to. Within the 

conversational ML space, Miao et al. [8] apply a similar technique to help LSTMs attend to 

particular input memories in their Neural Answer Selection Model. Yao et al. [9] do the same with 

a triple-nested RNN. 

Finally, a few state-of-the-art approaches to conversational ML attempt to use 

reinforcement learning (RL) to improve. Li et al. (2016c) [10] and Li et al. (2017) [11] allow dialog 

agents to improve their own communications via reciprocal interactions with human ‘teachers.’  

2.2 Memory Networks 

Memory networks (MemNNs) are a relatively novel class of methods used to “incorporate 

reasoning with attention over memory (RAM).” [12] By focusing on a select number of ‘relevant’ 

memories from a potentially massive input set, these networks can more effectively answer 

comprehension questions. The model, developed by Weston et al. [13], operates by training and 

running four component networks – an input feature map to convert incoming data, a 

generalization layer to incorporate the new inputs into memory, an output network to find the most 

relevant memories, and a response layer to convert the output to a textual output. When temporal 

information was relevant, Weston et al. modified the model to include features that tracked the 

relative time of each input fact’s occurrence. Furthermore, baseline resilience to words in the 

question that hadn’t appeared in the input (background/memory) text was built into the model by 

using a “bag-of-words” approach and by training with dropouts, or pretending that words were 
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new d% of the time. With these modifications, memory networks were able to vastly outperform 

both RNNs and LSTMs from past papers [13]. 

The output layer, tasked with identifying k memories to pay attention to, was originally 

trained in a fully supervised setting. This meant that the model required datasets that not only gave 

answers to questions (to train the response layer), but that also preselected the most relevant 

memories for each answer. This was a level of training that could not be incorporated into RNNs 

or LSTMs, but that few datasets met. Sukhbaatar et al. [14] removed the need for hard attention, 

requiring supervision only at the final response, in their End-to-End Memory Network construction 

(MemN2N). While performance for this model is marginally worse than the standard memory 

network, this is vastly outweighed by the benefits of no longer needing full supervision. There are 

many additional styles of memory networks built upon these baseline models and used to solve 

various other types of problems – I describe some of them in section §Error! Reference source 

not found.. 

The true success of these models on real-world datasets is (to some extent) in dispute. 

Bordes et al. [15] achieve “excellent performance” using memory networks trained on Freebase (a 

massive knowledgebase) to answer SimpleQuestions3, and are even able to perform well on the 

Reverb question set without retraining their model. However, Kapashi and Shah [16] find that the 

memory network approach performs poorly on other real-world datasets, in fact underperforming 

a baseline LSTM model on the MCTest set. 

2.3 Inferential Reasoning 

There are two broad areas of inferential reasoning that are particularly relevant to my work. One 

is the subdomain of paraphrasing, which essentially focuses on training machines to identify or 

																																																								
3 A popularly used dataset in this space 
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construct sentences that are paraphrases of one another. Berant and Liang [17] build two 

paraphrasing models: an associative approach and a vector-space approach, and train them on 

question-answer pairs. Meanwhile, Fader et al. [18] essentially take the converse approach by 

resolving multiple paraphrased versions of the same sentence into a global form. 

 The second relevant subdomain is logical inference, determining whether a candidate 

hypothesis can logically be inferred from a given statement. While the potential approaches to this 

problem are vast (including natural logic based architectures), most were out of the scope of what 

was achievable in my project timeframe. [19] 

3 Approach: SynNets 

To tackle the inferential jump problem, I develop a new machine learning model: the Synonym-

based Memory Network (SynNet). SynNets are modified versions of End-to-End Memory 

Networks that incorporate different word vector representations to improve resilience to reading 

comprehension questions with inferential jumps. In this section, I describe the underlying MemNN 

and MemN2N models in further detail, and then outline the modifications I made when designing 

and implementing SynNets. 

3.1 Memory Networks 

As mentioned in §2.2, Memory Networks allow agents to intelligently read and write from a 

dynamic memory bank. The central intuition behind their creation is “to combine the successful 

learning strategies developed in the machine learning literature for inference with a memory 

component that can be read and written to.” [13] 
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Figure 3: A top-level design diagram for the components that make up a Memory Network [20] 

 
The networks themselves consist of four component layers – Input, Generalization, Output, 

and Response. In greater detail: 

1. Input Feature Map: Converts the input text (ie. the background reading) into the internal 

feature representation. This typically involves preprocessing (tagging, parsing, etc.) the 

sentences and translating the inputs to vector form 

2. Generalization: Update the memory storage based on the input provided. This could be as 

simple as storing the converted input in a slot, or could involve more complex 

organization/periodic forgetfulness measures 

3. Output Feature Map: Given a question and the state of the model’s memory, produces an 

internal representation of the output. This is typically done in two stages: first, iterating 

through the memories to find the most relevant ones to the input question, and second, 

generating an output vector based on this subset of memories and the input question 

4. Response: Converts the output feature representation into the desired response format. This 

could be as simple as an RNN that is trained to build a textual answer from a given vector 
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3.2 End-to-End Memory Networks 

To remove the need for high-granularity datasets (see §2.2), Sukhbaatar et al. built a version of the 

baseline memory network architecture that is only trained at the response stage, the End-to-End 

Memory Network. [14] Vanilla memory networks used ‘hard’ functions like argmax that weren’t 

differentiable, meaning that the model as a whole could not back-propagate feedback from output 

to input. This new architecture, by contrast, reads from memory with soft attention, allowing for 

such feedback transmission. Further, unlike the regular memory network architecture, the end-to-

end model ‘hops’ through the memories when searching for relevance, incorporating previously 

selected memories when picking out new ones. 

 

 

Figure 4: A design overview for the end-to-end memory network architecture. Note that 
supervision is only performed at the output end. [21] 
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 In Figure 4 above, we see an overview of this process. The model makes two ‘hops’, 

addressing and reading from memory twice, before converting the final vector 𝑢" to the returned 

output. Figure 5, below, demonstrates an individual hop in more detail, outlining the specific 

modules and operations used.  

The Synonym-based Memory Network (SynNet) is built from the end-to-end memory 

network architecture as opposed to the vanilla memory network, given an obvious desire to allow 

for applicability to a wider range of datasets by minimizing required granularity. I proceed to 

outline the components of this network and my implementation of this construction in more detail.4 

 

 
Figure 5: A more intricate picture of the internal workings of the architecture. This picture 
represents a ‘one hop’ approach; Figure 4 essentially is an abstraction of three such modules 
rolled together. [14] 
 
 

																																																								
4 As mentioned in section §4.2.1, this construction is based off of the Matlab code open sourced by the 
Facebook AI Research team as well as Python scripts written by user Vinh Khuc 
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 For any given task5 we begin with: input (background) text represented as a series of 

sentences {𝑥%, 𝑥", … , 𝑥(}, a question 𝑞, and an answer 𝑎 that can be another sentence, a word, or a 

reference to one of the input sentences.6 These inputs are preprocessed: sentences are converted to 

lower case, tokenized, and iterated through to build a dictionary of the 𝐷 words involved in the 

stories. 

3.2.1 Input Feature Map 

This stage stores all of the inputs not as text that is uninterpretable by the machine but as a series 

of operable vectors called memories. We represent the memory vectors internally using a vector 

embedding approach. To this end, two embedding matrices are built and trained: 𝐴 .	×	1  and 

𝐶 .	×1  (see Figure 5 above). These matrices, each with dimensions 𝑣	×	𝐷, are used to convert the 

input sentences {𝑥(} into input and output memory vectors 𝑚( 	and	{𝑐(}, each of dimension 𝑣. 

These memory matrices are stored as the input and output embedding in Figure 5. The specific 

vector embedding I use is called a ‘one-hot’ matrix, with 1s in the positions of hit words and 0s 

otherwise; memories are simply one-hot vectors collected over a sentence of at most 20 words. 

Input and Output Embedding: 

	 𝑚%,𝑚", … ,𝑚( = 𝐴 .	×	1 	×	 𝑥%, 𝑥", …	, 𝑥( 	 1  

	 𝑐%, 𝑐", … , 𝑐( = 	𝐶 .	×	1 	×	 𝑥%, 𝑥", …	, 𝑥( 2   

3.2.2 Generalization 

Similarly, matrix 𝐵 .	×	1  is used to convert the question sentence 𝑞 into an input vector 𝑢.7 

 

																																																								
5 My approach involved training on thousands of such tasks and questions. Each independent story had its 
own background (input), but the model was trained jointly across all tasks 
6 The choice of answer format is dependent on the dataset instructions  
7 In subsequent hops, the question 𝑞 is replaced with the internal representation of the output from the 
previous layer, 𝑢 ;<% . See Figure 13 in Section §11.2 for more details on layering hops 
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Question Embedding: 

𝑢 = 	𝐵 .	×	1 	×	𝑞 3  

This input vector is then multiplied with the input embedding to form a probability vector 

(denoted by ‘Weights’ in Figure 5). This essentially represents using the question to establish 

which memories are most probabilistically likely to be relevant; there will ultimately be a 

probability assigned to each ‘slot’ of memory. For this operation, we use a softmax function that 

tracks the relative weights of each linear combination of memory and question. 

Probability Vector Construction: 

	𝑝( = 	Softmax(𝑢?𝑚() 4  

Softmax 𝑥( = 	
𝑒BC
𝑒BD	E

5  

3.2.3 Output Feature Map 

To build the output vector 𝑜, the model takes the sum of the output embeddings weighted by the 

probability vector for the current question. Here we essentially use the probability vector to 

identify which pieces of background will be most relevant in constructing the output. 

Output Vector Construction: 

	𝑜 = 𝑝(𝑐(
(

6  

3.2.4 Response 

Finally, to build a response, we use a different weight matrix 𝑊.	×	1  in conjunction with the input 

and output vectors 𝑢 and 𝑜. We sum the input and output vectors in order to essentially represent 

both the question and the memory generated by our hop(s), and weight/softmax this sum to once 

again establish the particular parts of the vector (ie. words) that are uniquely highlighted. 
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Response Generation: 

	𝑎 = 	Softmax(𝑊(𝑢 + 𝑜)) 7  

 This output label (or sentence, etc., depending on the nature of the dataset) can then be 

compared to the actual answer 𝑎, and we can attempt to minimize a cross-entropy loss function 

between the two labels. Given a set of input stories, questions, and answers, my end-to-end 

architecture trains the four embedding/weight matrices: 𝐴, 𝐵, 𝐶,	and	𝑊. Because these functions 

are smooth from input to output (ie. there aren’t any hard max functions, etc.), backpropagation is 

possible through the model to iteratively improve the values of these matrices. Once the matrices 

are finalized, testing is simple: stories are embedded and questions are pushed through the model 

to yield predicted answers that can be cross checked for accuracy. 

3.3 SynNets 

Having discussed my implementation of the baseline MemN2N architecture, I now turn to the 

SynNet modifications. Broadly, the intuition behind these changes lies in the hope that by 

including information on word similarities, the model will be able to make small-scale inferential 

jumps. To do so, I implement two approaches, one that relies on WordNet and another that relies 

on Word2Vec. 

3.3.1 WordNet 

The first implementation of the SynNet architecture relies on WordNet, a “large lexical database 

of English,” in which “nouns, verbs, adjectives and adverbs are grouped into sets of cognitive 

synonyms (synsets), each expressing a distinct concept.” [22] Synsets themselves can be linked to 

other synsets via hyponymy relationships, which connect more general synsets with more specific 

ones. For example, the synset for furniture and the synset for bed would be linked in this way. [22] 
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 To incorporate this information into the baseline MemN2N architecture, I began to embed 

questions along with the synsets of their component words. When encoding the one-hot vectors 

for questions, I generated a list of words present within the current synset and its parent synset for 

each hit word and mapped these into the vector as well. I ignored words from synsets not already 

present in the dictionary D (as that would mean they were certainly not in the input memories). 

The implementation of WordNet I used was rolled into the Natural Language Toolkit (NLTK) 

package, provided for Python. 

3.3.2 Word2Vec 

The second implementation I incorporated involves Word2Vec, a model that represents words 

based on the terms they co-occur with. One of the most successful intuitions developed in NLP in 

the past few decades is the idea that a word’s meaning can often be inferred from the company it 

keeps: to some extent, word co-occurrence can be a good predictor for word similarity. Word2Vec 

is a predictive model that is particularly effective and efficient at learning word vector embeddings 

that can represent such co-occurrence information in a dense form. [23], [24] 

 To include such information into my SynNet architecture, I removed the one-hot vector 

encoding of words from the models, replacing it with word vector representations returned by a 

pre-trained Word2Vec implementation. This way, SynNets would be able to more naturally see 

similarities between input questions and memories without having to rely on direct word matches. 

4 Rationale and Challenges 

In this section, I walk through various design decisions I made while building these networks. I 

begin by describing my rationale for choosing End-to-End Memory Networks as the foundational 

model for my project, then outline some of the challenges I ran into while implementing them. 
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4.1 Architecture Choice 

I was spoiled for choice when deciding on an adequate baseline model for the SynNet architecture. 

From the r-nets and BiDAF ensembles that dominate the Stanford Question Answering Dataset 

(SQuAD) accuracy leaderboard to more traditional LSTM and RNN-based systems, there exist a 

huge variety of question answering models, each optimized for a huge variety of datasets. To 

choose a useful baseline, I developed a set of four criteria that were particularly relevant for my 

design and implementation process: 

1. Accuracy – The model must demonstrate state-of-the-art performance on its datasets, 

whether measured in F1 scores, response accuracy, or some other metric 

2. Efficiency – Due to limitations in my ability to execute expensive code, especially on large 

datasets, the module must be relatively efficient in both space and memory 

3. Relevance – The model must be runnable on reading comprehension question-answering 

datasets. Ideally, it would be resilient enough to run on others as well. This was intended 

to filter out architectures that may be revolutionary in theory but have low accuracy within 

my specific sub-domain 

4. Availability – At the very least, the model must be published about and discussed 

extensively online; ideally, an open-source baseline implementation in Python exists, as 

this would vastly simplify my implementation process 

The results of my analysis are outlined in Figure 6. 
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Figure 6: Assessment of potential baseline architectures for SynNets 
 
 I ultimately settled on using End-to-End Memory Networks for their decent performance 

on all four metrics. Though they marginally underperformed models like the regular Memory 

Network or Reaso Nets, they more than made up for this in terms of implementation ease – both 

Architecture Accuracy Efficiency Relevance Availability 

LSTMs [6][25] : Long-Short 
Term Memory models are a series 
of chained components that each 
iteratively modify a ‘memory 
vector’  

Poor: Lower 
performance 
than most other 
models 

Neutral: 
Largely 
contingent on 
implementation 
details 

Good: There 
exist a huge 
variety of 
potential 

Good: Python 
impls exist, 
including for Q-
A problems 
specifically 

RNNSearch [7]: This architecture 
consists of a bidirectional RNN 
encoder and a gated RNN decoder 
used for machine translation 

Neutral: Better 
than base 
LSTMs, worse 
than MemNets 

Good: 
Runnable given 
my constraints 

Poor: Applied 
to machine 
translation, not 
reading comp. 

Poor: 
implementation 
in original form 
not published  

Neural Turing Machines [26]: 
Uses a read/write-able memory that 
is accessed by both content and 
address 

Neutral: 
Untested here; 
memory too 
small(?) 

Good: 
Runnable given 
my constraints 

Poor: Not 
applied 
specifically to 
QA subdomain 

Good: 
Implementations 
in various 
languages exist 

Reaso Nets [27] : Uses RL and a 
multi-turn approach to outperform 
on machine comprehension 
benchmarks  

Good: 
Outperforms all 
other attempts 
for SQuAD 
challenge 

Neutral: 
Largely 
contingent on 
implementation 
details 

Good: Works 
well on SQuAD 
problems 

Poor: Code not 
found openly 
available 

     
Memory Networks [13], [28] :  
Discussed at length in §3.1 

Good: High 
accuracy on 
baseline bAbI 
tasks 

Neutral: 
Runnable given 
my constraints; 
few datasets 

Good: Directly 
applied to 
reading 
comprehension 

Neutral: 
Original impl in 
Torch, but 3rd 
party in Python 

End-to-End Memory Networks 
[14]: Discussed at length in §3.2 

Good: High 
accuracy, but 
underperforms 
Memory Nets 

Good: 
Runnable given 
my constraints 

Good: Directly 
applied to 
reading 
comprehension 

Neutral: 
Original impl in 
Matlab, but 3rd 
party in Python 

Key-Value Memory Networks 
[29], [30]: To be discussed in 
§4.2.2 

Good: High 
accuracy, 
especially from 
real documents 

Poor: Unable 
to run on large 
datasets on 
local clusters 

Good: Directly 
applied to 
reading 
comprehension 

Neutral: 
Original impl in 
Torch, but 3rd 
party in Python 
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because existing implementations were widely available and because they were runnable on less 

heavily annotated datasets. 

4.2 Challenges 

While developing this model, I ran into a variety of challenges that often derailed my work for 

days or even weeks at a time. Below, I outline some of the most salient examples, along with 

explanations of how I attempted to resolve them. 

4.2.1 Interoperability of SynNet Components 

To build SynNets, I needed access to various third-party packages like WordNet and Word2Vec. 

In practice, this meant that my SynNet models had to be implemented in Python; WordNet 

especially is distributed primarily for mainstream languages (Java, Python, etc.) as opposed to 

languages like Torch or Matlab. This was a potentially serious issue since the candidate baseline 

architectures – including all of the memory network distributions – were written in the latter 

category of languages.  

 I evaded this problem by seeking out and using third-party implementations of these 

architectures. Obviously, third-party code is more susceptible to transcription and implementation 

errors; I attempted to reduce this possibility by locally benchmarking these versions against the 

official open-sourced packages, and by poring over the code to identify any unusual modifications. 

The final MemN2N implementation that I used both ran effectively and accurately and seemed to 

stick to the implementation details outlined in [14].8 

4.2.2 Key-Value Memory Network Efficiency 

The initial approach I investigated for this project relied on modifying Key-Value Memory 

Networks (KV-MemNNs) instead of MemN2Ns. KV-MemNNs differ from end to end memory 

																																																								
8 See §11.3 for a comparison between this version and the official Matlab implementation  
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networks in that they explicitly separate the input and output memory embeddings (see Figure 5 

above) into ‘keys’ and associated ‘values.’ The authors of the paper stored bags-of-words and 

sentences as keys (just as they are in the input memory structure of the MemN2N), but then store 

the ‘central word’ from those bags as values, or entities. The rationale behind this change is that 

by storing only the central or most important words as the (output) values, the model would better 

be able to utilize memory information across hops. [29] 

 

Figure 7: An illustration of the inner workings of the KV-MemNN architecture. Note that when the 
keys and values are the same form of representation of the knowledge source, the KV-MemNN 
reduces to a MemN2N [29] 
 

 In order to take advantage of the KV-MemNN’s greater resilience to messy real-world 

documents (in the hopes that modifying from this architecture would allow SynNets to perform 

well on a wider array of datasets), I initially attempted to use KV-MemNNs as my baseline 

architecture. This approach, though, ended up failing for efficiency reasons – the third-party KV-

MemNN code was unable to store the amount of data necessary to be able to run on large new 

datasets (like WikiQA or SQuAD). While this took up a large chunk of valuable time, I was able 

to quickly apply the insights I’d picked up while modifying this architecture when pivoting to 

adapt the MemN2N model instead. 
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4.2.3 Dataset Applicability 

The final challenge related to developing the data for this project. Most reading comprehension 

datasets intend to test models on questions that are explicitly answerable, ie. both the answers and 

formulations of the questions are present within the input memories. For my task, though, I needed 

questions that were answerable from the text but not directly present in it. Rather than building a 

brand-new dataset using Amazon Mechanical Turk or the like, I decided to modify questions from 

existing Q-A datasets (see section §5). In order to reduce the likelihood that the method of 

modification would confound the success rates,9 I made these changes manually, adapting patterns 

in the text to replace words in the vocabulary. This, though, drastically slowed my ability to modify 

the data and generate large scale testing sets (especially for a dataset as open ended as WikiQA). 

5 Data 

In section §11.5, I outline various datasets often used in the domain of reading comprehension 

question answering. For the purposes of this project, I focused on the bAbI and WikiQA sets of 

questions.  

5.1 The bAbI Tasks  

The bAbI tasks, open sourced by the Facebook AI Research lab along with their work on memory 

networks, is a series of computer-generated ‘stories’ that are intermittently sprinkled with 

questions (see Figure 8). These stories are split into 20 tasks, each attempting to test the model on 

a different style of question (yes/no questions, temporal questions, positional questions, etc.). For 

each task, the bAbI dataset includes 1000 training questions and 1000 testing questions. [31] 

																																																								
9 For example, if I had used a script to replace the words with elements from their synsets, I would 
trivially have been setting up the WordNet model to succeed. 
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Figure 8: An example of a story from the bAbI dataset. Notice the interspersed questions. 
 
 For the purposes of this project, I focused on tasks 2 (Two-Supporting Facts) and 6 (Yes/No 

Questions). I chose these tasks because their question styles contained common nouns that could 

be replaced in the testing set as needed. For each task, I modified the testing set by replacing 

common nouns in questions with parent or sibling nouns. For example, “Is John in the hallway?” 

became “Is John in the corridor?”, Is Mary in the garden? changed to “Is Mary outside?”, and 

“Where is the apple?”, became “Where is the fruit?” I attempted to make modifications that fit 

both criteria described in §1: synonymic relatedness and conceptual entailment.  

These changes had a drastic effect on the error rates of the traditional MemN2N: task 2 

saw the mean error go from 8.17% (original) to 21.07% (modified), while task 6 saw errors jump 

from 9.88% (original) to 46.67% (modified).10 

5.2 WikiQA 

The WikiQA dataset is constructed from the real world – it involves the Wikipedia summary 

paragraphs associated with over 3,000 Bing user queries. These summary paragraphs are then 

																																																								
10 Note that these spiking error rates also in a way validate the motivation for this paper; clearly, these 
state-of-the-art models have trouble dealing with even basic inferential jumps 

1 Mary moved to the bathroom. 
2 John went to the hallway. 
3 Where is Mary?        bathroom        1 
4 Daniel went back to the hallway. 
5 Sandra moved to the garden. 
6 Where is Daniel?      hallway 4 
7 John moved to the office. 
8 Sandra journeyed to the bathroom. 
9 Where is Daniel?      hallway 4 
10 Mary moved to the hallway. 
11 Daniel travelled to the office. 
12 Where is Daniel?     office  11 
13 John went back to the garden. 
14 John moved to the bedroom. 
15 Where is Sandra?     bathroom        8 
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broken up into sentences and labeled with 1s and 0s based on whether they answer the question at 

hand. [32] For example: 

Figure 9: An example of a question with possible Wikipedia summary answers, annotated by 
success/failure. 
 
 This dataset required a vast amount of labor-intensive modification. For one, I needed to 

make further modifications to the SynNet architecture to be able to parse this new format. More 

pressingly, though, I needed to take further care in changing up the test set questions, as these were 

far more complex queries. All in all, I was able to modify around 150 of the questions, done in the 

same way as outlined in section §5.1.11 

5.3 Hypotheses 

I predict that my models will generally be more resilient to the modified test sets than the original 

MemN2N approach. By including synset and Word2Vec information, I hope that SynNets will be 

able to resolve the kinds of changes made (especially in the bAbI set). While I expect error rates 

on the bAbI tasks to be lower (based on its constructed nature and limited word set), I am curious 

to see which approach will be more successful. The WordNet setup is simpler and so may be less 

																																																								
11 Note that since the training set is untouched by these modifications, the model training process 
shouldn’t have been adversely affected by the smaller scale of the test data 

Q1 how are glacier caves formed? D1 Glacier cave D1-0 A partly submerged 
glacier cave on Perito Moreno Glacier . 0 
 
Q1 how are glacier caves formed? D1 Glacier cave D1-1 The ice facade is 
approximately 60 m high 0 
 
Q1 how are glacier caves formed? D1 Glacier cave D1-2 Ice formations in 
the Titlis glacier cave 0 
 
Q1 how are glacier caves formed? D1 Glacier cave D1-3 A glacier cave is a 
cave formed within the ice of a glacier . 1 
 
Q1 how are glacier caves formed? D1 Glacier cave D1-4 Glacier caves are 
often called ice caves , but this term is properly used to describe bedrock caves that 
contain year-round ice. 0 
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resilient to modifications that aren’t in the same synsets, but the Word2Vec setup may adversely 

affect the way by which the model is able to retrieve memories in the first place, thereby increasing 

error rates. 

6 Results 

I ran both SynNet modifications and the original MemN2N implementation on these three datasets, 

noting the final error rates for each. Each run consisted of 120 epochs (with a 20-epoch linear start) 

on a 3-hop MemN2N/SynNet. My results are presented in the following table, which compares 

each model’s performance on these tasks. SynNet + WN represents the WordNet construction, 

while SynNet + WV represents the Word2Vec instantiation. 

 

 MemN2N SynNet + WN SynNet + WV 

bAbI    

Task 2 21.07% 12.03% 53.35% 

Task 6 46.67% 25.65% 51.84% 

WikiQA    

Subset of Questions 43.46% 32.21% 26.76% 

Figure 10: Error rates for the different implementations on the modified datasets. 

 
 The data highlight some interesting conclusions (especially relative to my hypotheses). For 

one, the Word2Vec SynNet approach was inconsistent, achieving benchmark rates on the WikiQA 

subset but performing poorly on both bAbI tasks. There are a variety of potential explanations for 

this unpredictable performance; as I mentioned in §5.3, the drastic modifications made to the 

memory storage structure may have reduced retrieval efficiency. The WordNet construction was 
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more consistent, outperforming the MemN2N implementation on each task. As expected, error 

rates were generally lower on the bAbI tasks than on the wikiQA subset.  

7 Future Work 

There are a variety of avenues for future work in this space. Most immediately, the intuitions 

behind SynNets could be applied to other reading comprehension models like Key-Value Memory 

Networks, Entity Networks, or deep LSTMs. By incorporating Word2Vec or WordNet similarity 

metrics into other architectures, we could better understand the value-add inherent to such 

modifications and continue to iteratively improve the state of the art on various Q-A tasks. 

 Future work should ideally also investigate exploring new styles of data. For one, running 

the model (with proper parallelization built in) on a modified version of the SQuAD dataset could 

give valuable insight as to whether SynNets are a viable solution to the inferential-jump problem 

in a much larger, real-world set. Similarly, SynNets could be applied to sentence completion 

benchmarks and the like, to establish whether their built-in resilience to word modifications are 

useful beyond the question answering subdomain. More broadly, researchers could attempt to use 

these insights to more directly take on the ‘consistency in conversation’ problems that were 

described in the Background section. 

 Finally, the true scope of SynNets needn’t be limited to exploring resilience to questions 

that are but one ‘word-similarity step’ away. By incorporating information from knowledge bases 

like Freebase, or by training on more complicated inferential jumps, the baseline SynNet 

architecture could potentially be able to explore and tackle far broader domains of questions. Even 

more ambitiously, SynNets could be combined with state of the art models in the conversational 

ML space and be trained to only request specific information from knowledge bases when such 

inferential jumps are necessary. [33] 
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8 Conclusion 

In this paper, I presented a novel machine learning model, the SynNet, that could help resolve the 

problem of inferential jumps in reading comprehension question answering. This approach was 

demonstrably effective relative to an End-to-End Memory Network baseline, but to differing 

degrees on the datasets they were tested on. I recommend that future work be done to refine this 

model further and apply it to even more complex domains. 

 Through this process, I received invaluable help from Professor Fellbaum, who guided me 

throughout and consistently pointed me in the right directions. I’d like to thank her for all of her 

support over the past semester. 

9 Honor Code 

This paper represents my own work in accordance with University Regulations. 

Signed: Bharath Srivatsan 
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11 Appendices 

11.1 Literature Review: Conversational Machine Learning 

In section §Error! Reference source not found., I described approaches to Q-A problems 

specifically, performing an abridged literature review of some recent work in that subdomain. 

Here, I take a broader approach, outlining some of the most important papers in the conversational 

ML domain. I proceed as follows: first, I outline the three kinds of conversations that these systems 

attempt to model, describing seminal papers and relevant techniques in each. Then, I’ll list some 

supplementary papers that work on the Q-A space. 

11.1.1 Subdomains in Conversational ML 

We can subdivide the domain of conversation-based machine learning tasks into three main 

categories: goal-oriented tasks, “chit chat” tasks, and Q-A tasks. Note, though, that these categories 

can often bleed into one another; chit-chat bots may also be expected to answer questions, and part 

of a goal-oriented conversational system might be engaging in chit chat. Also, I focus in the below 

discussion on machine learning-based approaches to these tasks, largely leaving aside purely 

heuristic or rule based systems. 

Goal-Oriented tasks involve structuring a conversational assistant to help a user complete 

a set of jobs. For example, a chatbot that allows users to book movies or find recommendations 

for restaurants is “goal-oriented” insofar as it is aimed at helping fulfill a user goal. A single goal-

oriented dialogue system can perform multiple functions (ie. order an Uber, make a reservation, 

etc.), but typically has a closed domain (a limited total set of functions that it can perform). 

Many goal-oriented chatbots use a slot-filling approach to fulfilling tasks – they predefine 

a set of “slots” (location, cuisine, time, etc.) necessary for the relevant API calls (to Yelp, for 

example), and attempt to map parts of input sentences to these slots. This approach has its 
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shortcomings, most centrally that user dialog may not follow this set of predefined patterns [34]. 

One approach used to avoid this problem uses a series of purposed neural networks. Wen et al. 

[35] train four neural networks in their dialog system: an LSTM for mapping vectorized input 

strings to intents, an RNN with a CNN feature extractor to build beliefs (strict mappings to be used 

in the database query) from intents, a policy network to construct database queries, and an LSTM 

to generate a conversational response based on the database results. Bordes et al. [34] use memory 

networks for this task instead, leveraging their ability to represent pieces of past conversation 

history to outperform a slot-filling baseline. Another approach to building goal-oriented taskbots 

incorporates reinforcement learning. RL in this context is sometimes used (to mixed success) in 

generating response dialogue, but more recently has been applied as a supplement to supervised 

learning of goal-fulfillment (in the style of AlphaGo’s training) by Su et al. [36]. 

Chit-chat tasks require conversational agents to generate “natural” conversations with 

users, whether in a closed or an open domain. Due to the massive scope of possible use cases, 

techniques used in this sphere vary widely but can generally be split into retrieval-based, Statistical 

Machine Translation (SMT), and generative models. The first class refers to systems that ‘retrieve’ 

and modify appropriate responses from existing corpora. These are less effective in open domains 

that can include a huge variety of appropriate responses and that require context-sensitivity (ie. in 

response style) [37]. SMT models attempt to ‘translate’ input text to parallel forms of output text, 

for example by mapping “I’m slowly making this soup… and it smell gorgeous” to the response 

“I’ll bet it looks delicious too!” [38]. Ritter, Cherry, and Dolan apply an SMT model on Twitter 

conversations, taking care to correct for the fact that responses don’t have to be semantically 

equivalent to inputs and that the most statistically similar response phrases are often identical 

phrases or synonyms. This model outperforms a benchmark retrieval system [38].  
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The final class of chit chat models use neural training to build responses. While technically 

just extensions of SMT approaches, generative models typically incorporate contextual 

information, or otherwise move further away from direct translations. Shang et al. [37] build a 

Neural Responding Machine (NRM), training and evaluating it on a microblogging service 

reminiscent of Ritter’s. By converting input strings to vectors and by using a probabilistic model 

to develop output vector strings, the NRM can generate responses that are relevant but that have 

completely different semantic structures and content from the inputs, something that Ritter’s SMT 

model is unable to do. Vinyals and Le [39] build upon this approach, and propose an end-to-end 

solution that incorporates the sequence to sequence framework (seq2seq), which predicts each 

token in the output based on input tokens. Serban et al. [40] use a similar model – a Hierarchical 

Recurrent Encoder-Decoder (HRED) – to generate speech from past occurrences, applied on a 

movie dialogue dataset. Finally, Wen et al. [41] use an LSTM for this purpose instead. These 

methods perform substantially better than the baseline-STM and retrieval-based models. 

In particular, three papers in this space bear highlighting for their relevance to my work. 

Li et al. (2016a) [42] recognize that neural conversational models often prioritize bland, generic 

responses like “I don’t know” based on their frequency in training corpora. To combat this, her 

team abandons the seq2seq paradigm for a Maximum Mutual Information (MMI) objective 

function. This objective function uses pairwise likelihood as opposed to source-to-output 

likelihood as the basis for its predictions, but more broadly, shows the importance of choosing 

appropriate objective functions for these problems [42]. Sordoni et al. [43] extend the reach of 

these models backwards, by incorporating context beyond single-line inputs into a continuous 

context vector fed to RNN Language Models (RLMs). In this way, responses can be sensitive to a 

larger amount of relevant past information. Finally, Li et al. (2016b) [44] try to enforce consistency 
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in a conversational agent’s responses by embedding and incorporating a speaker/speaker-

addressee ‘style vector’ in their seq2seq LSTM.12 

11.1.2 Question-Answering Models: 

The third style of task is the one that I focused on in this paper: Q-A Models. As mentioned 

previously, in this set of challenges, conversational agents are told to answer questions based on 

varying amounts of input information. I’ve included only supplementary literature below (taking 

care not to repeat information mentioned in §2.1). 

Beyond Joulin and Mikolov’s [4] stack-augmented net, Wang and Jiang [45] use a match-

LSTM model to answer reading comprehension questions based on a given (‘memorized’) chunk 

of text. This approach is quite effective, since answers are often paraphrased pieces from the input 

text, and these models simply match pieces of relevant input premises to outputs. Abstracting their 

approach away from any specific implementation (making their mechanism work on both CNNs 

and RNNs), dos Santos et al. [46] propose a two-way attention system called Attentive Pooling 

(AP). AP allows paired inputs to be represented together regardless of respective lengths, allowing 

attention vectors to be computed for specific questions. This approach allows their team to 

outperform CNNs and bidirectional LSTMs trained without attention. 

 

 

 

 

 

 

																																																								
12 To avoid the problem described in Li et al. (2016a), the team ranks potential responses using a scoring 
function that works from target to source 
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11.2 Additional Implementation Diagrams 

I’ve included below other helpful figures and explanatory diagrams relevant for this paper. 

 

 

Figure 11: This is a simplified representation of Figure 5, and more cleanly displays the process 
by which a given hop utilizes the memory module in answering questions. [21] 
 
 
 

 

Figure 12: This is a replication of Figure 11, but with sample inputs and weights to further 
contextualize the process. [21] 
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Figure 13: This is a clearer picture for the layering process of the end-to-end memory network 
architecture. As shown in the diagram, input and output vectors are summed to form the input 
vectors of the layers above. [14] 
 
 
11.3 Implementation Comparison 

As mentioned in Section §4.2.1, my implementation of the baseline end-to-end memory network 

was modified from an existing open source python repository (created by Vinh Khuc). Apart from 

Vinh’s code, though, there also exists another widely-used implementation. This one, written by 

Dominique Luna, leverages TensorFlow in Python. Below, I’ve included a comparison of the self-

reported task-by-task error rates for these two models and the original implementation, trained 

jointly on the bAbI tasks (lower is better). For each task, I’ve bolded the better error rate between 

the two third-party implementations. 

Task Original (Matlab) Vinh Khuc (Python) Dominique Luna (Python) 

1 0 0.1 0.1 

2 13.1 16.6 15.1 

3 23.4 26.3 28.5 
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4 5.9 11.3 14.9 

5 12.9 14.4 13.5 

6 3.7 2.8 3.6 

7 22.9 16 14.9 

8 9.1 10.1 10.2 

9 2.7 2.3 4 

10 7.2 6.5 7.2 

11 0.8 1.2 7 

12 0.1 0.2 1.8 

13 0.1 0.5 2.4 

14 4.2 5.5 12.3 

15 0 0.3 1.7 

16 1.2 2.1 56 

17 43.6 42.6 45.3 

18 10.5 9 41.4 

19 86.7 90.2 89.6 

20 0 0.2 0.4 

Mean 12.4 12.9 18.5 

Figure 14: A comparison of baseline models 

The Vinh Khuc implementation was preferred on almost all tasks, and has a significantly lower 

mean error rate. It approximates the MemN2N model accuracy rates on almost all tasks. 
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11.4 End-to-End Memory Network Accuracy Tradeoff 

The following table, taken from [14], shows the accuracy tradeoffs inherent in the vanilla memory 

network versus end-to-end memory network comparison. As mentioned briefly earlier, the 

MemN2N model slightly underperforms the baseline MemNN implementation, though this can be 

overlooked for the massive reduction in dataset complexity needed. 

Figure 15: Accuracy rates for MemN2N and MemNN models 
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11.5 Dataset Comparison 

Reading comprehension datasets generally come in one of two flavors. Cloze sets expect an agent 

to fill in a blank word or sentence based on a collection of words that came prior. Q-A sets, by 

contrast, ask models to formulate a specific response (yes/no, a word, a sentence, etc.) to an explicit 

question asked about information that came prior. In this section, I provide a rough outline of freely 

available, simple, open-ended13, and high-quality reading comprehension Q-A datasets.14 

Obviously, though, Q-A sets can be converted to cloze sets (and vice versa) by representing 

questions as the final sentence in the set upon which to generate new content (or by converting the 

final sentence to a question). 

Dataset Description Source Notes for Project 

bAbI 
20 tasks for testing text 
understanding and reasoning 

Computer-
generated 

Used in project (discussed above) 

WikiQA 

A Challenge Dataset for 
Open-Domain Question 
Answering 

User Logs 

Dataset hard to modify for project 
scope; involved mappings that were 
incredibly time consuming to do 
manually. Subset used in project 

SQuAD 
100,000+ Questions for 
Machine Comprehension of 
Text 

Human-
generated 

Dataset quite large, in a format that 
was difficult to parse for project 
given variance in sentence length, etc. 

QuizBowl 
A Neural Network for 
Factoid Question Answering 
over Paragraphs 

Human-
generated 

Involved a lot of extraneous detail, 
like position of buzzing, etc., that was 
out of my project’s scope 

Figure 16: Dataset details 

Information used in this table: [32], [49]–[52] 

																																																								
13 This condition excluded multiple-choice datasets like MCTest and factoid creation datasets like 
SimpleQuestions [15], [47] 
14 For cloze datasets and datasets outside of the reading comprehension subdomain, see [48] 


