
- Independent Work Report, Spring 2017 -

Ask Me Otherwise:
Synonym-Based Memory Networks for Reading Comprehension

Bharath Srivatsan
Advisor: Christiane Fellbaum

Abstract

Machine learning models built to read and comprehend text are becoming ever more

complex. Driven by a desire for more accurate text understanding (whether to be used for

generating conversational responses, taking actions, or even just storing knowledge), researchers

have been iteratively improving on reading comprehension question-answering techniques. In this

paper, I investigate one issue in this subdomain that many state-of-the-art approaches aren’t

resilient to: inferential jumps, in which questions being asked don’t line up exactly with stored

memories. I then develop a novel architecture, Synonym-Based Memory Networks (SynNets), that

use WordNet and Word2Vec to better make such jumps from input documents when answering

questions. In practice, applied to appropriately modified subsets of the bAbI and WikiQA datasets,

I find that this model is indeed able to outperform an unmodified End-to-End Memory Network

baseline.

 2

1 Background

The past decade has seen an explosion of interest and research into natural language processing

(NLP), the means by which machines interpret and interact with human-understandable language.

Thanks to this relentless development, dialog agents have become increasingly advanced, tasked

with doing anything from ordering groceries to telling party jokes. While heuristic or ‘retrieval-

based’ agents once dominated this market, it is conversational machine learning that now powers

millions of users’ interactions with their devices via Siri, Alexa, Google, and Cortana (not to

mention the wave of chatbots present on platforms from Facebook to WeChat). [1] This gradual

change has been driven in large part by the complexities inherent in talking to humans in an open

domain; old models that pulled pre-constructed answers from vast databases weren’t resilient to

the sheer variety of possible human questions. It seems that these efforts have largely paid off –

today’s AI assistants are vastly more sophisticated than those of yesteryear. [2]

 All this improvement notwithstanding, end-to-end dialog agents still suffer from a host of

seemingly simple problems; a plethora of pop culture references to ‘Siri fails’ have developed

around the assistant’s misunderstanding of basic questions. [3] One interesting class of such

failures are related to conversational agents’ inability to intelligently retain relevant information.

This most often manifests itself in the form of sharply divergent answers to similar questions (see

Figure 1) or as repeated requests for previously disclosed information.

 3

Figure 1: While Siri has clever, canned responses ready for some queries (left), it sometimes is
seemingly forgetful (middle) or wildly inconsistent across answers to closely related questions
(right).

 These problems persist despite recent advances in storing memories for machine learning.

From image processing programs to translation bots to reading comprehension agents, there has

been a glut of powerful ML models with powerful recollection abilities. That said, the nature of

memory utilization, especially in the realm of question-answering, is often fairly shallow, relying

on direct word matches between memorized phrases and posed questions. This explains some of

the difficulty that Siri has in the third example from Figure 1 above; regardless of how good its

memory storage is, without an ability to link those three questions together and dynamically

remember them, it will never be guaranteed to respond consistently.

 This disconnect between memory retrieval and dynamic memory understanding is what I

term the ‘inference jump’. Humans naturally extract far more information from a given sentence

 4

than the words in the sentence themselves. For example, when I announce that I’m hoping to chow

down on some naan, I’m simultaneously implying that I’m hoping to eat some naan, I’m hoping

to chow down on some Indian food, I’m not hoping to eat Mexican food, and perhaps even I like

Indian food. Some of these translations may seem excessively simple, but their value shouldn’t be

understated: if I subsequently ask Siri for food options, I’d hope that the agent would be able to

find Indian restaurants open soon near me.

 The inference jump can also manifest itself in other contexts. Conversational agents often

act and sound repetitive, cycling through the same responses to given queries. An intelligent use

of dynamic, inference-enabled memory would be to aid in the construction of more varied

responses. Such an AI might be able to answer the same question in different ways but with the

same content, thereby better approximating the response pattern of a human being.

Figure 2: Questions 2 and 3 demonstrate the inference jump at work – machines attempting to
answer them would need to make an inferential link (however small) between Paris and France
and between ‘feared’ and ‘scared of.’ Correspondingly, state-of-the-art conversational agents
would likely be able to answer Question 1 with ease but subsequently struggle on 2 and 3.

 Being able to more intelligently combine memory retrieval with inferences is important

beyond creating a more humanoid Alexa, though. Developing a more complete ‘understanding’ of

text (reading comprehension) relies on this ability (see Figure 2). The advantages to training an

Sample Test Question

Read and Respond: “John Doe was born on a small street in Paris. His brown hair
almost completely covered his forehead. It had been many moons since he’d cut it; he
feared barbers.”

1: Is John Doe’s hair brown?
2: Was John Doe born in France?
3: What is John Doe scared of?

 5

inference-enabled, memory-possessing agent on a reading comprehension dataset are immense –

it would be able to generalize its learning more broadly to accurately answer a far wider array of

follow up questions.

 The preceding paragraphs set up in vague terms the motivation for this paper: I hope to

develop a machine learning model that is better able to make small-scale inferential jumps in

reasoning when answering questions. To limit the scope of this problem, I focus exclusively on

question answering on reading comprehension datasets, testing my model on questions that cannot

be directly tied to exact phrases in the text. There are two inferential jumps I attempt to bridge with

this new architecture:

1. Synonymic Relatedness (being afraid is being scared, chowing down on is eating, etc.)

2. Conceptual Entailment (a poodle is necessarily a dog, naan is a subset of Indian food, etc.)

The latter category includes geographical entailment as well (as in the Paris example

above). The remainder of this paper is organized as follows. Section §2 surveys some past work

done in this domain. I discuss my approach and implementation details in Section §3 and the

rationale and challenges associated with this approach in Section §4. Section §5 details the datasets

I use for my work, while Section §6 outlines my results on this data. Finally, I sketch some

potential avenues for future work in Section §7 and conclude in Section §8.

2 Related Work

Broadly, there are three relevant areas of background research pertinent to my work. First, existing

Question-Answering models were informative in guiding the possible approaches I wished to

develop for this problem. Second, memory networks, learning models developed to solve various

NLP-related tasks, served as the underlying architecture for my project, and represented the

 6

baselines that I wished to improve upon. Finally, I built upon other work done to improve the

inferential reasoning capacity of machines, even if not directly applied to the NLP space.

2.1 Q-A Models

The basic task that Q-A machine learning models are faced with involves being fed information

and told to answer follow-up questions on the content of these conversations. There are a variety

of ways that researchers have attacked this problem, but the central intuition behind many proposed

models is the need for a ‘storage mechanism’ and (sometimes) an ‘attention mechanism.’ The

former is the way by which agents retain memories to be accessed when constructing answers,

while the latter is the way by which agents identify the particular pieces of memory most relevant

to a given question.

 Most storage mechanisms consist of some encoding of textual inputs, whether separated

into sentences, ‘windows’ (sliding groups of words), or some other form. Some memory structures

are static, constructed during the initial document input, while others are dynamically modified

through their use. For example, Joulin and Mikolov [4] build a Recurrent Neural Network (RNN)

that can begin to keep track of past memories in a stack, but Xiong et al. [5] outperform that setup

with what they call the Dynamic Coattention Network, an architecture that refines a question and

input document simultaneously (and dynamically) using Long Short Term Memory networks

(LSTMs).1

 The ‘attention mechanism’ domain has been the focus of a vast amount of research in recent

years. In the machine translation space2, Bahdanau et al. [7] build a system called RNNSearch.

																																																								
1 For the purposes of this paper, I do not explore RNN and LSTM constructions in much depth, though it
is worth mentioning that these neural network architectures are very commonly used in the NLP space
(especially in conjunction with other modules). For more, see [6]
2 Broadly, machine translation problems involve converting text in one format to another (often language
to language). Techniques vary wildly, but many approaches use networks that recursively convert
individual entities from the input. See §11.1 for more

 7

This neural machine translation approach involves building a single RNN that is jointly tuned to

refine both an encoder and decoder for relevant memories. In doing so, their key contribution is to

move from a fixed-length source vector model to one that can soft-search for relevant pieces of

source text, thereby allowing more nuanced retrieval of memories to pay attention to. Within the

conversational ML space, Miao et al. [8] apply a similar technique to help LSTMs attend to

particular input memories in their Neural Answer Selection Model. Yao et al. [9] do the same with

a triple-nested RNN.

Finally, a few state-of-the-art approaches to conversational ML attempt to use

reinforcement learning (RL) to improve. Li et al. (2016c) [10] and Li et al. (2017) [11] allow dialog

agents to improve their own communications via reciprocal interactions with human ‘teachers.’

2.2 Memory Networks

Memory networks (MemNNs) are a relatively novel class of methods used to “incorporate

reasoning with attention over memory (RAM).” [12] By focusing on a select number of ‘relevant’

memories from a potentially massive input set, these networks can more effectively answer

comprehension questions. The model, developed by Weston et al. [13], operates by training and

running four component networks – an input feature map to convert incoming data, a

generalization layer to incorporate the new inputs into memory, an output network to find the most

relevant memories, and a response layer to convert the output to a textual output. When temporal

information was relevant, Weston et al. modified the model to include features that tracked the

relative time of each input fact’s occurrence. Furthermore, baseline resilience to words in the

question that hadn’t appeared in the input (background/memory) text was built into the model by

using a “bag-of-words” approach and by training with dropouts, or pretending that words were

 8

new d% of the time. With these modifications, memory networks were able to vastly outperform

both RNNs and LSTMs from past papers [13].

The output layer, tasked with identifying k memories to pay attention to, was originally

trained in a fully supervised setting. This meant that the model required datasets that not only gave

answers to questions (to train the response layer), but that also preselected the most relevant

memories for each answer. This was a level of training that could not be incorporated into RNNs

or LSTMs, but that few datasets met. Sukhbaatar et al. [14] removed the need for hard attention,

requiring supervision only at the final response, in their End-to-End Memory Network construction

(MemN2N). While performance for this model is marginally worse than the standard memory

network, this is vastly outweighed by the benefits of no longer needing full supervision. There are

many additional styles of memory networks built upon these baseline models and used to solve

various other types of problems – I describe some of them in section §Error! Reference source

not found..

The true success of these models on real-world datasets is (to some extent) in dispute.

Bordes et al. [15] achieve “excellent performance” using memory networks trained on Freebase (a

massive knowledgebase) to answer SimpleQuestions3, and are even able to perform well on the

Reverb question set without retraining their model. However, Kapashi and Shah [16] find that the

memory network approach performs poorly on other real-world datasets, in fact underperforming

a baseline LSTM model on the MCTest set.

2.3 Inferential Reasoning

There are two broad areas of inferential reasoning that are particularly relevant to my work. One

is the subdomain of paraphrasing, which essentially focuses on training machines to identify or

																																																								
3 A popularly used dataset in this space

 9

construct sentences that are paraphrases of one another. Berant and Liang [17] build two

paraphrasing models: an associative approach and a vector-space approach, and train them on

question-answer pairs. Meanwhile, Fader et al. [18] essentially take the converse approach by

resolving multiple paraphrased versions of the same sentence into a global form.

 The second relevant subdomain is logical inference, determining whether a candidate

hypothesis can logically be inferred from a given statement. While the potential approaches to this

problem are vast (including natural logic based architectures), most were out of the scope of what

was achievable in my project timeframe. [19]

3 Approach: SynNets

To tackle the inferential jump problem, I develop a new machine learning model: the Synonym-

based Memory Network (SynNet). SynNets are modified versions of End-to-End Memory

Networks that incorporate different word vector representations to improve resilience to reading

comprehension questions with inferential jumps. In this section, I describe the underlying MemNN

and MemN2N models in further detail, and then outline the modifications I made when designing

and implementing SynNets.

3.1 Memory Networks

As mentioned in §2.2, Memory Networks allow agents to intelligently read and write from a

dynamic memory bank. The central intuition behind their creation is “to combine the successful

learning strategies developed in the machine learning literature for inference with a memory

component that can be read and written to.” [13]

 10

Figure 3: A top-level design diagram for the components that make up a Memory Network [20]

The networks themselves consist of four component layers – Input, Generalization, Output,

and Response. In greater detail:

1. Input Feature Map: Converts the input text (ie. the background reading) into the internal

feature representation. This typically involves preprocessing (tagging, parsing, etc.) the

sentences and translating the inputs to vector form

2. Generalization: Update the memory storage based on the input provided. This could be as

simple as storing the converted input in a slot, or could involve more complex

organization/periodic forgetfulness measures

3. Output Feature Map: Given a question and the state of the model’s memory, produces an

internal representation of the output. This is typically done in two stages: first, iterating

through the memories to find the most relevant ones to the input question, and second,

generating an output vector based on this subset of memories and the input question

4. Response: Converts the output feature representation into the desired response format. This

could be as simple as an RNN that is trained to build a textual answer from a given vector

 11

3.2 End-to-End Memory Networks

To remove the need for high-granularity datasets (see §2.2), Sukhbaatar et al. built a version of the

baseline memory network architecture that is only trained at the response stage, the End-to-End

Memory Network. [14] Vanilla memory networks used ‘hard’ functions like argmax that weren’t

differentiable, meaning that the model as a whole could not back-propagate feedback from output

to input. This new architecture, by contrast, reads from memory with soft attention, allowing for

such feedback transmission. Further, unlike the regular memory network architecture, the end-to-

end model ‘hops’ through the memories when searching for relevance, incorporating previously

selected memories when picking out new ones.

Figure 4: A design overview for the end-to-end memory network architecture. Note that
supervision is only performed at the output end. [21]

 12

 In Figure 4 above, we see an overview of this process. The model makes two ‘hops’,

addressing and reading from memory twice, before converting the final vector 𝑢" to the returned

output. Figure 5, below, demonstrates an individual hop in more detail, outlining the specific

modules and operations used.

The Synonym-based Memory Network (SynNet) is built from the end-to-end memory

network architecture as opposed to the vanilla memory network, given an obvious desire to allow

for applicability to a wider range of datasets by minimizing required granularity. I proceed to

outline the components of this network and my implementation of this construction in more detail.4

Figure 5: A more intricate picture of the internal workings of the architecture. This picture
represents a ‘one hop’ approach; Figure 4 essentially is an abstraction of three such modules
rolled together. [14]

																																																								
4 As mentioned in section §4.2.1, this construction is based off of the Matlab code open sourced by the
Facebook AI Research team as well as Python scripts written by user Vinh Khuc

 13

 For any given task5 we begin with: input (background) text represented as a series of

sentences {𝑥%, 𝑥", … , 𝑥(}, a question 𝑞, and an answer 𝑎 that can be another sentence, a word, or a

reference to one of the input sentences.6 These inputs are preprocessed: sentences are converted to

lower case, tokenized, and iterated through to build a dictionary of the 𝐷 words involved in the

stories.

3.2.1 Input Feature Map

This stage stores all of the inputs not as text that is uninterpretable by the machine but as a series

of operable vectors called memories. We represent the memory vectors internally using a vector

embedding approach. To this end, two embedding matrices are built and trained: 𝐴 .	×	1 and

𝐶 .	×1 (see Figure 5 above). These matrices, each with dimensions 𝑣	×	𝐷, are used to convert the

input sentences {𝑥(} into input and output memory vectors 𝑚(and	{𝑐(}, each of dimension 𝑣.

These memory matrices are stored as the input and output embedding in Figure 5. The specific

vector embedding I use is called a ‘one-hot’ matrix, with 1s in the positions of hit words and 0s

otherwise; memories are simply one-hot vectors collected over a sentence of at most 20 words.

Input and Output Embedding:

	 𝑚%,𝑚", … ,𝑚(= 𝐴 .	×	1 	×	 𝑥%, 𝑥", …	, 𝑥(1

	 𝑐%, 𝑐", … , 𝑐(= 	𝐶 .	×	1 	×	 𝑥%, 𝑥", …	, 𝑥(2

3.2.2 Generalization

Similarly, matrix 𝐵 .	×	1 is used to convert the question sentence 𝑞 into an input vector 𝑢.7

																																																								
5 My approach involved training on thousands of such tasks and questions. Each independent story had its
own background (input), but the model was trained jointly across all tasks
6 The choice of answer format is dependent on the dataset instructions
7 In subsequent hops, the question 𝑞 is replaced with the internal representation of the output from the
previous layer, 𝑢 ;<% . See Figure 13 in Section §11.2 for more details on layering hops

 14

Question Embedding:

𝑢 = 	𝐵 .	×	1 	×	𝑞 3

This input vector is then multiplied with the input embedding to form a probability vector

(denoted by ‘Weights’ in Figure 5). This essentially represents using the question to establish

which memories are most probabilistically likely to be relevant; there will ultimately be a

probability assigned to each ‘slot’ of memory. For this operation, we use a softmax function that

tracks the relative weights of each linear combination of memory and question.

Probability Vector Construction:

	𝑝(= 	Softmax(𝑢?𝑚() 4

Softmax 𝑥(= 	
𝑒BC
𝑒BD	E

5

3.2.3 Output Feature Map

To build the output vector 𝑜, the model takes the sum of the output embeddings weighted by the

probability vector for the current question. Here we essentially use the probability vector to

identify which pieces of background will be most relevant in constructing the output.

Output Vector Construction:

	𝑜 = 𝑝(𝑐(
(

6

3.2.4 Response

Finally, to build a response, we use a different weight matrix 𝑊.	×	1 in conjunction with the input

and output vectors 𝑢 and 𝑜. We sum the input and output vectors in order to essentially represent

both the question and the memory generated by our hop(s), and weight/softmax this sum to once

again establish the particular parts of the vector (ie. words) that are uniquely highlighted.

 15

Response Generation:

	𝑎 = 	Softmax(𝑊(𝑢 + 𝑜)) 7

 This output label (or sentence, etc., depending on the nature of the dataset) can then be

compared to the actual answer 𝑎, and we can attempt to minimize a cross-entropy loss function

between the two labels. Given a set of input stories, questions, and answers, my end-to-end

architecture trains the four embedding/weight matrices: 𝐴, 𝐵, 𝐶,	and	𝑊. Because these functions

are smooth from input to output (ie. there aren’t any hard max functions, etc.), backpropagation is

possible through the model to iteratively improve the values of these matrices. Once the matrices

are finalized, testing is simple: stories are embedded and questions are pushed through the model

to yield predicted answers that can be cross checked for accuracy.

3.3 SynNets

Having discussed my implementation of the baseline MemN2N architecture, I now turn to the

SynNet modifications. Broadly, the intuition behind these changes lies in the hope that by

including information on word similarities, the model will be able to make small-scale inferential

jumps. To do so, I implement two approaches, one that relies on WordNet and another that relies

on Word2Vec.

3.3.1 WordNet

The first implementation of the SynNet architecture relies on WordNet, a “large lexical database

of English,” in which “nouns, verbs, adjectives and adverbs are grouped into sets of cognitive

synonyms (synsets), each expressing a distinct concept.” [22] Synsets themselves can be linked to

other synsets via hyponymy relationships, which connect more general synsets with more specific

ones. For example, the synset for furniture and the synset for bed would be linked in this way. [22]

 16

 To incorporate this information into the baseline MemN2N architecture, I began to embed

questions along with the synsets of their component words. When encoding the one-hot vectors

for questions, I generated a list of words present within the current synset and its parent synset for

each hit word and mapped these into the vector as well. I ignored words from synsets not already

present in the dictionary D (as that would mean they were certainly not in the input memories).

The implementation of WordNet I used was rolled into the Natural Language Toolkit (NLTK)

package, provided for Python.

3.3.2 Word2Vec

The second implementation I incorporated involves Word2Vec, a model that represents words

based on the terms they co-occur with. One of the most successful intuitions developed in NLP in

the past few decades is the idea that a word’s meaning can often be inferred from the company it

keeps: to some extent, word co-occurrence can be a good predictor for word similarity. Word2Vec

is a predictive model that is particularly effective and efficient at learning word vector embeddings

that can represent such co-occurrence information in a dense form. [23], [24]

 To include such information into my SynNet architecture, I removed the one-hot vector

encoding of words from the models, replacing it with word vector representations returned by a

pre-trained Word2Vec implementation. This way, SynNets would be able to more naturally see

similarities between input questions and memories without having to rely on direct word matches.

4 Rationale and Challenges

In this section, I walk through various design decisions I made while building these networks. I

begin by describing my rationale for choosing End-to-End Memory Networks as the foundational

model for my project, then outline some of the challenges I ran into while implementing them.

 17

4.1 Architecture Choice

I was spoiled for choice when deciding on an adequate baseline model for the SynNet architecture.

From the r-nets and BiDAF ensembles that dominate the Stanford Question Answering Dataset

(SQuAD) accuracy leaderboard to more traditional LSTM and RNN-based systems, there exist a

huge variety of question answering models, each optimized for a huge variety of datasets. To

choose a useful baseline, I developed a set of four criteria that were particularly relevant for my

design and implementation process:

1. Accuracy – The model must demonstrate state-of-the-art performance on its datasets,

whether measured in F1 scores, response accuracy, or some other metric

2. Efficiency – Due to limitations in my ability to execute expensive code, especially on large

datasets, the module must be relatively efficient in both space and memory

3. Relevance – The model must be runnable on reading comprehension question-answering

datasets. Ideally, it would be resilient enough to run on others as well. This was intended

to filter out architectures that may be revolutionary in theory but have low accuracy within

my specific sub-domain

4. Availability – At the very least, the model must be published about and discussed

extensively online; ideally, an open-source baseline implementation in Python exists, as

this would vastly simplify my implementation process

The results of my analysis are outlined in Figure 6.

 18

Figure 6: Assessment of potential baseline architectures for SynNets

 I ultimately settled on using End-to-End Memory Networks for their decent performance

on all four metrics. Though they marginally underperformed models like the regular Memory

Network or Reaso Nets, they more than made up for this in terms of implementation ease – both

Architecture Accuracy Efficiency Relevance Availability

LSTMs [6][25] : Long-Short
Term Memory models are a series
of chained components that each
iteratively modify a ‘memory
vector’

Poor: Lower
performance
than most other
models

Neutral:
Largely
contingent on
implementation
details

Good: There
exist a huge
variety of
potential

Good: Python
impls exist,
including for Q-
A problems
specifically

RNNSearch [7]: This architecture
consists of a bidirectional RNN
encoder and a gated RNN decoder
used for machine translation

Neutral: Better
than base
LSTMs, worse
than MemNets

Good:
Runnable given
my constraints

Poor: Applied
to machine
translation, not
reading comp.

Poor:
implementation
in original form
not published

Neural Turing Machines [26]:
Uses a read/write-able memory that
is accessed by both content and
address

Neutral:
Untested here;
memory too
small(?)

Good:
Runnable given
my constraints

Poor: Not
applied
specifically to
QA subdomain

Good:
Implementations
in various
languages exist

Reaso Nets [27] : Uses RL and a
multi-turn approach to outperform
on machine comprehension
benchmarks

Good:
Outperforms all
other attempts
for SQuAD
challenge

Neutral:
Largely
contingent on
implementation
details

Good: Works
well on SQuAD
problems

Poor: Code not
found openly
available

Memory Networks [13], [28] :
Discussed at length in §3.1

Good: High
accuracy on
baseline bAbI
tasks

Neutral:
Runnable given
my constraints;
few datasets

Good: Directly
applied to
reading
comprehension

Neutral:
Original impl in
Torch, but 3rd
party in Python

End-to-End Memory Networks
[14]: Discussed at length in §3.2

Good: High
accuracy, but
underperforms
Memory Nets

Good:
Runnable given
my constraints

Good: Directly
applied to
reading
comprehension

Neutral:
Original impl in
Matlab, but 3rd
party in Python

Key-Value Memory Networks
[29], [30]: To be discussed in
§4.2.2

Good: High
accuracy,
especially from
real documents

Poor: Unable
to run on large
datasets on
local clusters

Good: Directly
applied to
reading
comprehension

Neutral:
Original impl in
Torch, but 3rd
party in Python

 19

because existing implementations were widely available and because they were runnable on less

heavily annotated datasets.

4.2 Challenges

While developing this model, I ran into a variety of challenges that often derailed my work for

days or even weeks at a time. Below, I outline some of the most salient examples, along with

explanations of how I attempted to resolve them.

4.2.1 Interoperability of SynNet Components

To build SynNets, I needed access to various third-party packages like WordNet and Word2Vec.

In practice, this meant that my SynNet models had to be implemented in Python; WordNet

especially is distributed primarily for mainstream languages (Java, Python, etc.) as opposed to

languages like Torch or Matlab. This was a potentially serious issue since the candidate baseline

architectures – including all of the memory network distributions – were written in the latter

category of languages.

 I evaded this problem by seeking out and using third-party implementations of these

architectures. Obviously, third-party code is more susceptible to transcription and implementation

errors; I attempted to reduce this possibility by locally benchmarking these versions against the

official open-sourced packages, and by poring over the code to identify any unusual modifications.

The final MemN2N implementation that I used both ran effectively and accurately and seemed to

stick to the implementation details outlined in [14].8

4.2.2 Key-Value Memory Network Efficiency

The initial approach I investigated for this project relied on modifying Key-Value Memory

Networks (KV-MemNNs) instead of MemN2Ns. KV-MemNNs differ from end to end memory

																																																								
8 See §11.3 for a comparison between this version and the official Matlab implementation

 20

networks in that they explicitly separate the input and output memory embeddings (see Figure 5

above) into ‘keys’ and associated ‘values.’ The authors of the paper stored bags-of-words and

sentences as keys (just as they are in the input memory structure of the MemN2N), but then store

the ‘central word’ from those bags as values, or entities. The rationale behind this change is that

by storing only the central or most important words as the (output) values, the model would better

be able to utilize memory information across hops. [29]

Figure 7: An illustration of the inner workings of the KV-MemNN architecture. Note that when the
keys and values are the same form of representation of the knowledge source, the KV-MemNN
reduces to a MemN2N [29]

 In order to take advantage of the KV-MemNN’s greater resilience to messy real-world

documents (in the hopes that modifying from this architecture would allow SynNets to perform

well on a wider array of datasets), I initially attempted to use KV-MemNNs as my baseline

architecture. This approach, though, ended up failing for efficiency reasons – the third-party KV-

MemNN code was unable to store the amount of data necessary to be able to run on large new

datasets (like WikiQA or SQuAD). While this took up a large chunk of valuable time, I was able

to quickly apply the insights I’d picked up while modifying this architecture when pivoting to

adapt the MemN2N model instead.

 21

4.2.3 Dataset Applicability

The final challenge related to developing the data for this project. Most reading comprehension

datasets intend to test models on questions that are explicitly answerable, ie. both the answers and

formulations of the questions are present within the input memories. For my task, though, I needed

questions that were answerable from the text but not directly present in it. Rather than building a

brand-new dataset using Amazon Mechanical Turk or the like, I decided to modify questions from

existing Q-A datasets (see section §5). In order to reduce the likelihood that the method of

modification would confound the success rates,9 I made these changes manually, adapting patterns

in the text to replace words in the vocabulary. This, though, drastically slowed my ability to modify

the data and generate large scale testing sets (especially for a dataset as open ended as WikiQA).

5 Data

In section §11.5, I outline various datasets often used in the domain of reading comprehension

question answering. For the purposes of this project, I focused on the bAbI and WikiQA sets of

questions.

5.1 The bAbI Tasks

The bAbI tasks, open sourced by the Facebook AI Research lab along with their work on memory

networks, is a series of computer-generated ‘stories’ that are intermittently sprinkled with

questions (see Figure 8). These stories are split into 20 tasks, each attempting to test the model on

a different style of question (yes/no questions, temporal questions, positional questions, etc.). For

each task, the bAbI dataset includes 1000 training questions and 1000 testing questions. [31]

																																																								
9 For example, if I had used a script to replace the words with elements from their synsets, I would
trivially have been setting up the WordNet model to succeed.

 22

Figure 8: An example of a story from the bAbI dataset. Notice the interspersed questions.

 For the purposes of this project, I focused on tasks 2 (Two-Supporting Facts) and 6 (Yes/No

Questions). I chose these tasks because their question styles contained common nouns that could

be replaced in the testing set as needed. For each task, I modified the testing set by replacing

common nouns in questions with parent or sibling nouns. For example, “Is John in the hallway?”

became “Is John in the corridor?”, Is Mary in the garden? changed to “Is Mary outside?”, and

“Where is the apple?”, became “Where is the fruit?” I attempted to make modifications that fit

both criteria described in §1: synonymic relatedness and conceptual entailment.

These changes had a drastic effect on the error rates of the traditional MemN2N: task 2

saw the mean error go from 8.17% (original) to 21.07% (modified), while task 6 saw errors jump

from 9.88% (original) to 46.67% (modified).10

5.2 WikiQA

The WikiQA dataset is constructed from the real world – it involves the Wikipedia summary

paragraphs associated with over 3,000 Bing user queries. These summary paragraphs are then

																																																								
10 Note that these spiking error rates also in a way validate the motivation for this paper; clearly, these
state-of-the-art models have trouble dealing with even basic inferential jumps

1 Mary moved to the bathroom.
2 John went to the hallway.
3 Where is Mary? bathroom 1
4 Daniel went back to the hallway.
5 Sandra moved to the garden.
6 Where is Daniel? hallway 4
7 John moved to the office.
8 Sandra journeyed to the bathroom.
9 Where is Daniel? hallway 4
10 Mary moved to the hallway.
11 Daniel travelled to the office.
12 Where is Daniel? office 11
13 John went back to the garden.
14 John moved to the bedroom.
15 Where is Sandra? bathroom 8
	

 23

broken up into sentences and labeled with 1s and 0s based on whether they answer the question at

hand. [32] For example:

Figure 9: An example of a question with possible Wikipedia summary answers, annotated by
success/failure.

 This dataset required a vast amount of labor-intensive modification. For one, I needed to

make further modifications to the SynNet architecture to be able to parse this new format. More

pressingly, though, I needed to take further care in changing up the test set questions, as these were

far more complex queries. All in all, I was able to modify around 150 of the questions, done in the

same way as outlined in section §5.1.11

5.3 Hypotheses

I predict that my models will generally be more resilient to the modified test sets than the original

MemN2N approach. By including synset and Word2Vec information, I hope that SynNets will be

able to resolve the kinds of changes made (especially in the bAbI set). While I expect error rates

on the bAbI tasks to be lower (based on its constructed nature and limited word set), I am curious

to see which approach will be more successful. The WordNet setup is simpler and so may be less

																																																								
11 Note that since the training set is untouched by these modifications, the model training process
shouldn’t have been adversely affected by the smaller scale of the test data

Q1 how are glacier caves formed? D1 Glacier cave D1-0 A partly submerged
glacier cave on Perito Moreno Glacier . 0

Q1 how are glacier caves formed? D1 Glacier cave D1-1 The ice facade is
approximately 60 m high 0

Q1 how are glacier caves formed? D1 Glacier cave D1-2 Ice formations in
the Titlis glacier cave 0

Q1 how are glacier caves formed? D1 Glacier cave D1-3 A glacier cave is a
cave formed within the ice of a glacier . 1

Q1 how are glacier caves formed? D1 Glacier cave D1-4 Glacier caves are
often called ice caves , but this term is properly used to describe bedrock caves that
contain year-round ice. 0

	

 24

resilient to modifications that aren’t in the same synsets, but the Word2Vec setup may adversely

affect the way by which the model is able to retrieve memories in the first place, thereby increasing

error rates.

6 Results

I ran both SynNet modifications and the original MemN2N implementation on these three datasets,

noting the final error rates for each. Each run consisted of 120 epochs (with a 20-epoch linear start)

on a 3-hop MemN2N/SynNet. My results are presented in the following table, which compares

each model’s performance on these tasks. SynNet + WN represents the WordNet construction,

while SynNet + WV represents the Word2Vec instantiation.

 MemN2N SynNet + WN SynNet + WV

bAbI

Task 2 21.07% 12.03% 53.35%

Task 6 46.67% 25.65% 51.84%

WikiQA

Subset of Questions 43.46% 32.21% 26.76%

Figure 10: Error rates for the different implementations on the modified datasets.

 The data highlight some interesting conclusions (especially relative to my hypotheses). For

one, the Word2Vec SynNet approach was inconsistent, achieving benchmark rates on the WikiQA

subset but performing poorly on both bAbI tasks. There are a variety of potential explanations for

this unpredictable performance; as I mentioned in §5.3, the drastic modifications made to the

memory storage structure may have reduced retrieval efficiency. The WordNet construction was

 25

more consistent, outperforming the MemN2N implementation on each task. As expected, error

rates were generally lower on the bAbI tasks than on the wikiQA subset.

7 Future Work

There are a variety of avenues for future work in this space. Most immediately, the intuitions

behind SynNets could be applied to other reading comprehension models like Key-Value Memory

Networks, Entity Networks, or deep LSTMs. By incorporating Word2Vec or WordNet similarity

metrics into other architectures, we could better understand the value-add inherent to such

modifications and continue to iteratively improve the state of the art on various Q-A tasks.

 Future work should ideally also investigate exploring new styles of data. For one, running

the model (with proper parallelization built in) on a modified version of the SQuAD dataset could

give valuable insight as to whether SynNets are a viable solution to the inferential-jump problem

in a much larger, real-world set. Similarly, SynNets could be applied to sentence completion

benchmarks and the like, to establish whether their built-in resilience to word modifications are

useful beyond the question answering subdomain. More broadly, researchers could attempt to use

these insights to more directly take on the ‘consistency in conversation’ problems that were

described in the Background section.

 Finally, the true scope of SynNets needn’t be limited to exploring resilience to questions

that are but one ‘word-similarity step’ away. By incorporating information from knowledge bases

like Freebase, or by training on more complicated inferential jumps, the baseline SynNet

architecture could potentially be able to explore and tackle far broader domains of questions. Even

more ambitiously, SynNets could be combined with state of the art models in the conversational

ML space and be trained to only request specific information from knowledge bases when such

inferential jumps are necessary. [33]

 26

8 Conclusion

In this paper, I presented a novel machine learning model, the SynNet, that could help resolve the

problem of inferential jumps in reading comprehension question answering. This approach was

demonstrably effective relative to an End-to-End Memory Network baseline, but to differing

degrees on the datasets they were tested on. I recommend that future work be done to refine this

model further and apply it to even more complex domains.

 Through this process, I received invaluable help from Professor Fellbaum, who guided me

throughout and consistently pointed me in the right directions. I’d like to thank her for all of her

support over the past semester.

9 Honor Code

This paper represents my own work in accordance with University Regulations.

Signed: Bharath Srivatsan

10 References

[1] J. Koetsier, “Alexa, Google, Siri, Cortana: 24.5M Voice-first Devices Will Ship This Year,”
Forbes. [Online]. Available: http://www.forbes.com/sites/johnkoetsier/2017/01/26/alexa-
google-siri-cortana-24-5m-voice-first-devices-will-ship-this-year/. [Accessed: 01-May-
2017].

[2] “Why Deep Learning Is Suddenly Changing Your Life,” Fortune. .
[3] “/r/SiriFail,” reddit. [Online]. Available: https://www.reddit.com/r/SiriFail/. [Accessed: 01-

May-2017].
[4] A. Joulin and T. Mikolov, “Inferring Algorithmic Patterns with Stack-Augmented

Recurrent Nets,” ArXiv150301007 Cs, Mar. 2015.
[5] C. Xiong, V. Zhong, and R. Socher, “Dynamic Coattention Networks For Question

Answering,” ArXiv161101604 Cs, Nov. 2016.
[6] C. Olah, “Understanding LSTM Networks,” 27-Aug-2015. [Online]. Available:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/. [Accessed: 28-Feb-2017].
[7] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to

align and translate,” ArXiv Prepr. ArXiv14090473, 2016.
[8] Y. Miao, L. Yu, and P. Blunsom, “Neural variational inference for text processing,” in

Proc. ICML, 2016.
[9] K. Yao, G. Zweig, and B. Peng, “Attention with intention for a neural network conversation

model,” ArXiv Prepr. ArXiv151008565, 2015.

 27

[10] J. Li, A. H. Miller, S. Chopra, M. Ranzato, and J. Weston, “Learning Through Dialogue
Interactions,” ArXiv Prepr. ArXiv161204936, 2016.

[11] J. Li, A. H. Miller, S. Chopra, M. Ranzato, and J. Weston, “Dialogue Learning With
Human-In-The-Loop,” ArXiv Prepr. ArXiv161109823, 2017.

[12] CS224D, CS224D Guest Lecture: Jason Weston - Lectures from 2015. .
[13] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” ArXiv Prepr. ArXiv14103916,

2014.
[14] S. Sukhbaatar, J. Weston, R. Fergus, and others, “End-to-end memory networks,” in

Advances in neural information processing systems, 2015, pp. 2440–2448.
[15] A. Bordes, N. Usunier, S. Chopra, and J. Weston, “Large-scale simple question answering

with memory networks,” ArXiv Prepr. ArXiv150602075, 2015.
[16] D. Kapashi and P. Shah, “Answering Reading Comprehension Using Memory Networks.”
[17] J. Berant and P. Liang, “Semantic Parsing via Paraphrasing,” Assoc. Comput. Linguist.

ACL, 2014.
[18] A. Fader, L. Zettlemoyer, and O. Etzioni, “Paraphrase-Driven Learning for Open Question

Answering,” Assoc. Comput. Linguist. ACL, 2013.
[19] B. MacCartney and C. D. Manning, “Natural Logic for Textual Inference,” in Proceedings

of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, Stroudsburg, PA,
USA, 2007, pp. 193–200.

[20] A. Coyler, “Memory Networks,” the morning paper, 10-Mar-2016. .
[21] “Memory Networks for Language Understanding, ICML Tutorial 2016.” [Online].

Available: http://www.thespermwhale.com/jaseweston/icml2016/. [Accessed: 03-May-
2017].

[22] “About WordNet - WordNet - About WordNet.” [Online]. Available:
https://wordnet.princeton.edu/. [Accessed: 02-Apr-2017].

[23] “Vector Representations of Words,” TensorFlow. [Online]. Available:
https://www.tensorflow.org/tutorials/word2vec. [Accessed: 05-May-2017].

[24] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed Representations
of Words and Phrases and their Compositionality,” ArXiv13104546 Cs Stat, Oct. 2013.

[25] K. M. Hermann et al., “Teaching Machines to Read and Comprehend,” ArXiv150603340
Cs, Jun. 2015.

[26] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,” ArXiv Prepr.
ArXiv14105401, 2014.

[27] Y. Shen, P.-S. Huang, J. Gao, and W. Chen, “ReasoNet: Learning to Stop Reading in
Machine Comprehension,” ArXiv160905284 Cs, Sep. 2016.

[28] “facebook/MemNN,” GitHub. [Online]. Available: https://github.com/facebook/MemNN.
[Accessed: 13-Feb-2017].

[29] A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and J. Weston, “Key-value memory
networks for directly reading documents,” ArXiv Prepr. ArXiv160603126, 2016.

[30] “siyuanzhao/key-value-memory-networks,” GitHub. [Online]. Available:
https://github.com/siyuanzhao/key-value-memory-networks. [Accessed: 03-May-2017].

[31] J. Weston et al., “Towards ai-complete question answering: A set of prerequisite toy tasks,”
ArXiv Prepr. ArXiv150205698, 2015.

[32] Y. Yang, S. W. Yih, and C. Meek, “WikiQA: A Challenge Dataset for Open-Domain
Question Answering,” Microsoft Res., Sep. 2015.

 28

[33] J. E. Weston, “Dialog-based language learning,” in Advances in Neural Information
Processing Systems, 2016, pp. 829–837.

[34] A. Bordes, Y.-L. Boureau, and J. Weston, “Learning End-to-End Goal-Oriented Dialog,”
ArXiv160507683 Cs, May 2016.

[35] T.-H. Wen et al., “A network-based end-to-end trainable task-oriented dialogue system,”
ArXiv Prepr. ArXiv160404562, 2016.

[36] P.-H. Su et al., “Continuously learning neural dialogue management,” ArXiv Prepr.
ArXiv160602689, 2016.

[37] L. Shang, Z. Lu, and H. Li, “Neural responding machine for short-text conversation,” ArXiv
Prepr. ArXiv150302364, 2015.

[38] A. Ritter, C. Cherry, and W. B. Dolan, “Data-driven Response Generation in Social
Media,” in Proceedings of the Conference on Empirical Methods in Natural Language
Processing, Stroudsburg, PA, USA, 2011, pp. 583–593.

[39] O. Vinyals and Q. Le, “A neural conversational model,” ArXiv Prepr. ArXiv150605869,
2015.

[40] I. V. Serban, A. Sordoni, Y. Bengio, A. Courville, and J. Pineau, “Building end-to-end
dialogue systems using generative hierarchical neural network models,” ArXiv Prepr.
ArXiv150704808, 2015.

[41] T.-H. Wen, M. Gasic, N. Mrksic, P.-H. Su, D. Vandyke, and S. Young, “Semantically
conditioned lstm-based natural language generation for spoken dialogue systems,” ArXiv
Prepr. ArXiv150801745, 2015.

[42] J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan, “A diversity-promoting objective
function for neural conversation models,” ArXiv Prepr. ArXiv151003055, 2016.

[43] A. Sordoni et al., “A Neural Network Approach to Context-Sensitive Generation of
Conversational Responses,” ArXiv150606714 Cs, Jun. 2015.

[44] J. Li, M. Galley, C. Brockett, G. P. Spithourakis, J. Gao, and B. Dolan, “A persona-based
neural conversation model,” ArXiv Prepr. ArXiv160306155, 2016.

[45] S. Wang and J. Jiang, “Machine comprehension using match-lstm and answer pointer,”
ArXiv Prepr. ArXiv160807905, 2016.

[46] C. N. dos Santos, M. Tan, B. Xiang, and B. Zhou, “Attentive pooling networks,” CoRR
Abs160203609, 2016.

[47] M. Richardson, C. J. Burges, and E. Renshaw, “MCTest: A Challenge Dataset for the
Open-Domain Machine Comprehension of Text.,” in EMNLP, 2013, vol. 3, p. 4.

[48] “karthikncode/nlp-datasets,” GitHub. [Online]. Available:
https://github.com/karthikncode/nlp-datasets. [Accessed: 05-May-2017].

[49] T. Nguyen et al., “MS MARCO: A Human Generated MAchine Reading COmprehension
Dataset,” ArXiv161109268 Cs, Nov. 2016.

[50] D. Paperno et al., “The LAMBADA dataset: Word prediction requiring a broad discourse
context,” ArXiv160606031 Cs, Jun. 2016.

[51] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQuAD: 100,000+ Questions for
Machine Comprehension of Text,” ArXiv160605250 Cs, Jun. 2016.

[52] “QANTA: A Deep Question Answering Model.” [Online]. Available:
https://cs.umd.edu/~miyyer/qblearn/. [Accessed: 05-May-2017].

 29

11 Appendices

11.1 Literature Review: Conversational Machine Learning

In section §Error! Reference source not found., I described approaches to Q-A problems

specifically, performing an abridged literature review of some recent work in that subdomain.

Here, I take a broader approach, outlining some of the most important papers in the conversational

ML domain. I proceed as follows: first, I outline the three kinds of conversations that these systems

attempt to model, describing seminal papers and relevant techniques in each. Then, I’ll list some

supplementary papers that work on the Q-A space.

11.1.1 Subdomains in Conversational ML

We can subdivide the domain of conversation-based machine learning tasks into three main

categories: goal-oriented tasks, “chit chat” tasks, and Q-A tasks. Note, though, that these categories

can often bleed into one another; chit-chat bots may also be expected to answer questions, and part

of a goal-oriented conversational system might be engaging in chit chat. Also, I focus in the below

discussion on machine learning-based approaches to these tasks, largely leaving aside purely

heuristic or rule based systems.

Goal-Oriented tasks involve structuring a conversational assistant to help a user complete

a set of jobs. For example, a chatbot that allows users to book movies or find recommendations

for restaurants is “goal-oriented” insofar as it is aimed at helping fulfill a user goal. A single goal-

oriented dialogue system can perform multiple functions (ie. order an Uber, make a reservation,

etc.), but typically has a closed domain (a limited total set of functions that it can perform).

Many goal-oriented chatbots use a slot-filling approach to fulfilling tasks – they predefine

a set of “slots” (location, cuisine, time, etc.) necessary for the relevant API calls (to Yelp, for

example), and attempt to map parts of input sentences to these slots. This approach has its

 30

shortcomings, most centrally that user dialog may not follow this set of predefined patterns [34].

One approach used to avoid this problem uses a series of purposed neural networks. Wen et al.

[35] train four neural networks in their dialog system: an LSTM for mapping vectorized input

strings to intents, an RNN with a CNN feature extractor to build beliefs (strict mappings to be used

in the database query) from intents, a policy network to construct database queries, and an LSTM

to generate a conversational response based on the database results. Bordes et al. [34] use memory

networks for this task instead, leveraging their ability to represent pieces of past conversation

history to outperform a slot-filling baseline. Another approach to building goal-oriented taskbots

incorporates reinforcement learning. RL in this context is sometimes used (to mixed success) in

generating response dialogue, but more recently has been applied as a supplement to supervised

learning of goal-fulfillment (in the style of AlphaGo’s training) by Su et al. [36].

Chit-chat tasks require conversational agents to generate “natural” conversations with

users, whether in a closed or an open domain. Due to the massive scope of possible use cases,

techniques used in this sphere vary widely but can generally be split into retrieval-based, Statistical

Machine Translation (SMT), and generative models. The first class refers to systems that ‘retrieve’

and modify appropriate responses from existing corpora. These are less effective in open domains

that can include a huge variety of appropriate responses and that require context-sensitivity (ie. in

response style) [37]. SMT models attempt to ‘translate’ input text to parallel forms of output text,

for example by mapping “I’m slowly making this soup… and it smell gorgeous” to the response

“I’ll bet it looks delicious too!” [38]. Ritter, Cherry, and Dolan apply an SMT model on Twitter

conversations, taking care to correct for the fact that responses don’t have to be semantically

equivalent to inputs and that the most statistically similar response phrases are often identical

phrases or synonyms. This model outperforms a benchmark retrieval system [38].

 31

The final class of chit chat models use neural training to build responses. While technically

just extensions of SMT approaches, generative models typically incorporate contextual

information, or otherwise move further away from direct translations. Shang et al. [37] build a

Neural Responding Machine (NRM), training and evaluating it on a microblogging service

reminiscent of Ritter’s. By converting input strings to vectors and by using a probabilistic model

to develop output vector strings, the NRM can generate responses that are relevant but that have

completely different semantic structures and content from the inputs, something that Ritter’s SMT

model is unable to do. Vinyals and Le [39] build upon this approach, and propose an end-to-end

solution that incorporates the sequence to sequence framework (seq2seq), which predicts each

token in the output based on input tokens. Serban et al. [40] use a similar model – a Hierarchical

Recurrent Encoder-Decoder (HRED) – to generate speech from past occurrences, applied on a

movie dialogue dataset. Finally, Wen et al. [41] use an LSTM for this purpose instead. These

methods perform substantially better than the baseline-STM and retrieval-based models.

In particular, three papers in this space bear highlighting for their relevance to my work.

Li et al. (2016a) [42] recognize that neural conversational models often prioritize bland, generic

responses like “I don’t know” based on their frequency in training corpora. To combat this, her

team abandons the seq2seq paradigm for a Maximum Mutual Information (MMI) objective

function. This objective function uses pairwise likelihood as opposed to source-to-output

likelihood as the basis for its predictions, but more broadly, shows the importance of choosing

appropriate objective functions for these problems [42]. Sordoni et al. [43] extend the reach of

these models backwards, by incorporating context beyond single-line inputs into a continuous

context vector fed to RNN Language Models (RLMs). In this way, responses can be sensitive to a

larger amount of relevant past information. Finally, Li et al. (2016b) [44] try to enforce consistency

 32

in a conversational agent’s responses by embedding and incorporating a speaker/speaker-

addressee ‘style vector’ in their seq2seq LSTM.12

11.1.2 Question-Answering Models:

The third style of task is the one that I focused on in this paper: Q-A Models. As mentioned

previously, in this set of challenges, conversational agents are told to answer questions based on

varying amounts of input information. I’ve included only supplementary literature below (taking

care not to repeat information mentioned in §2.1).

Beyond Joulin and Mikolov’s [4] stack-augmented net, Wang and Jiang [45] use a match-

LSTM model to answer reading comprehension questions based on a given (‘memorized’) chunk

of text. This approach is quite effective, since answers are often paraphrased pieces from the input

text, and these models simply match pieces of relevant input premises to outputs. Abstracting their

approach away from any specific implementation (making their mechanism work on both CNNs

and RNNs), dos Santos et al. [46] propose a two-way attention system called Attentive Pooling

(AP). AP allows paired inputs to be represented together regardless of respective lengths, allowing

attention vectors to be computed for specific questions. This approach allows their team to

outperform CNNs and bidirectional LSTMs trained without attention.

																																																								
12 To avoid the problem described in Li et al. (2016a), the team ranks potential responses using a scoring
function that works from target to source

 33

11.2 Additional Implementation Diagrams

I’ve included below other helpful figures and explanatory diagrams relevant for this paper.

Figure 11: This is a simplified representation of Figure 5, and more cleanly displays the process
by which a given hop utilizes the memory module in answering questions. [21]

Figure 12: This is a replication of Figure 11, but with sample inputs and weights to further
contextualize the process. [21]

 34

Figure 13: This is a clearer picture for the layering process of the end-to-end memory network
architecture. As shown in the diagram, input and output vectors are summed to form the input
vectors of the layers above. [14]

11.3 Implementation Comparison

As mentioned in Section §4.2.1, my implementation of the baseline end-to-end memory network

was modified from an existing open source python repository (created by Vinh Khuc). Apart from

Vinh’s code, though, there also exists another widely-used implementation. This one, written by

Dominique Luna, leverages TensorFlow in Python. Below, I’ve included a comparison of the self-

reported task-by-task error rates for these two models and the original implementation, trained

jointly on the bAbI tasks (lower is better). For each task, I’ve bolded the better error rate between

the two third-party implementations.

Task Original (Matlab) Vinh Khuc (Python) Dominique Luna (Python)

1 0 0.1 0.1

2 13.1 16.6 15.1

3 23.4 26.3 28.5

 35

4 5.9 11.3 14.9

5 12.9 14.4 13.5

6 3.7 2.8 3.6

7 22.9 16 14.9

8 9.1 10.1 10.2

9 2.7 2.3 4

10 7.2 6.5 7.2

11 0.8 1.2 7

12 0.1 0.2 1.8

13 0.1 0.5 2.4

14 4.2 5.5 12.3

15 0 0.3 1.7

16 1.2 2.1 56

17 43.6 42.6 45.3

18 10.5 9 41.4

19 86.7 90.2 89.6

20 0 0.2 0.4

Mean 12.4 12.9 18.5

Figure 14: A comparison of baseline models

The Vinh Khuc implementation was preferred on almost all tasks, and has a significantly lower

mean error rate. It approximates the MemN2N model accuracy rates on almost all tasks.

 36

11.4 End-to-End Memory Network Accuracy Tradeoff

The following table, taken from [14], shows the accuracy tradeoffs inherent in the vanilla memory

network versus end-to-end memory network comparison. As mentioned briefly earlier, the

MemN2N model slightly underperforms the baseline MemNN implementation, though this can be

overlooked for the massive reduction in dataset complexity needed.

Figure 15: Accuracy rates for MemN2N and MemNN models

 37

11.5 Dataset Comparison

Reading comprehension datasets generally come in one of two flavors. Cloze sets expect an agent

to fill in a blank word or sentence based on a collection of words that came prior. Q-A sets, by

contrast, ask models to formulate a specific response (yes/no, a word, a sentence, etc.) to an explicit

question asked about information that came prior. In this section, I provide a rough outline of freely

available, simple, open-ended13, and high-quality reading comprehension Q-A datasets.14

Obviously, though, Q-A sets can be converted to cloze sets (and vice versa) by representing

questions as the final sentence in the set upon which to generate new content (or by converting the

final sentence to a question).

Dataset Description Source Notes for Project

bAbI
20 tasks for testing text
understanding and reasoning

Computer-
generated

Used in project (discussed above)

WikiQA

A Challenge Dataset for
Open-Domain Question
Answering

User Logs

Dataset hard to modify for project
scope; involved mappings that were
incredibly time consuming to do
manually. Subset used in project

SQuAD
100,000+ Questions for
Machine Comprehension of
Text

Human-
generated

Dataset quite large, in a format that
was difficult to parse for project
given variance in sentence length, etc.

QuizBowl
A Neural Network for
Factoid Question Answering
over Paragraphs

Human-
generated

Involved a lot of extraneous detail,
like position of buzzing, etc., that was
out of my project’s scope

Figure 16: Dataset details

Information used in this table: [32], [49]–[52]

																																																								
13 This condition excluded multiple-choice datasets like MCTest and factoid creation datasets like
SimpleQuestions [15], [47]
14 For cloze datasets and datasets outside of the reading comprehension subdomain, see [48]

